Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ensuring fairness in computational problems has emerged as a key topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It is possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In this paper we address the problem of incorporation of fairness from a combinatorial optimization perspective. We formulate a combinatorial optimization framework, suitable for analysis by researchers in approximation algorithms and related areas, that incorporates fairness in maximum coverage problems as an interplay between two conflicting objectives. Fairness is imposed in coverage by using coloring constraints that minimizes the discrepancies between number of elements of different colors covered by selected sets; this is in contrast to the usual discrepancy minimization problems studied extensively in the literature where (usually two) colors are not given a priori but need to be selected to minimize the maximum color discrepancy of each individual set. Our main results are a set of randomized and deterministic approximation algorithms that attempts to simultaneously approximate both fairness and coverage in this framework.more » « less
-
Abstract We analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention Deficit Hyperactivity Disorder (adhd). We express the task for finding changes as a network anomaly detection problem on temporal networks. We propose the use of a curvature measure based on the Forman–Ricci curvature, which expresses higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman–Ricci curvature with another well-known notion of network curvature, namely the Ollivier–Ricci curvature, lends further justification to the assertions that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature differs dramatically in brains ofadhdpatients compared to healthy brains. The importance of these edges is supported by existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional approaches, for example analysis of edge weights, would not be able to identify.more » « less
-
null (Ed.)Characterizing topological properties and anomalous behaviors of higher-dimensional topological spaces via notions of curvatures is by now quite common in mainstream physics and mathematics, and it is therefore natural to try to extend these notions from the non-network domains in a suitable way to the network science domain. In this article we discuss one such extension, namely Ollivier’s discretization of Ricci curvature. We first motivate, define and illustrate the Ollivier–Ricci Curvature. In the next section we provide some “not-previously-published” bounds on the exact and approximate computation of the curvature measure. In the penultimate section we review a method based on the linear sketching technique for efficient approximate computation of the Ollivier–Ricci network curvature. Finally in the last section we provide concluding remarks with pointers for further reading.more » « less
-
BackgroundSince biological systems are complex and often involve multiple types of genomic relationships, tensor analysis methods can be utilized to elucidate these hidden complex relationships. There is a pressing need for this, as the interpretation of the results of high‐throughput experiments has advanced at a much slower pace than the accumulation of data. ResultsIn this review we provide an overview of some tensor analysis methods for biological systems. ConclusionsTensors are natural and powerful generalizations of vectors and matrices to higher dimensions and play a fundamental role in physics, mathematics and many other areas. Tensor analysis methods can be used to provide the foundations of systematic approaches to distinguish significant higher order correlations among the elements of a complex systems via finding ensembles of a small number of reduced systems that provide a concise and representative summary of these correlations.more » « less
An official website of the United States government
